

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS Ministério da Ciência e Tecnologia

Otimização dos parâmetros de deposição de filmes de DLC (Diamond-like Carbon) como função da polarização e largura do pulso em superfície de Ti₆Al₄V

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Bruna Henrique da Silva (INPE, Bolsista PIBIC/CNPq) E-mail: bruna_12_78@hotmail.com

Vladimir Jesus Trava Airoldi (INPE, Orientador) E-mail: vladimir@las.inpe.br

> COLABORADORES Valerie C. Corcuera (LAS/CTE/INPE)

> > Julho/2014

Sumário

1. RESUMO	3
2. OBJETIVO	3
3. INTRODUÇÃO	3
3.1. O DLC	4
3.1.1. Propriedades e aplicações do DLC	4
4. METODOLOGIA	5
4.1. Preparação e limpeza das amostras	5
4.2. Deposição dos filmes	5
4.3. Caracterizações	7
4.3.1. Perfilometria Óptica	8
4.3.2. Espectroscopia Raman	8
4.3.3. Ensaios de Aderência	9
5. RESULTADOS E DISCUSSÕES	10
5.1. Perfilometria Óptica	10
5.2. Espectroscopia Raman	13
5.3. Ensaio de Aderência	14
6. CONSIDERAÇÕES FINAIS	16
7. REFERÊNCIAS BIBLIOGRÁFICAS	17

1 – RESUMO

O estudo de filmes de carbono-tipo diamante (DLC) é recentemente de grande interesse para grupos científicos e tecnológicos, isso deve-se às suas propriedades, como baixo coeficiente de atrito, inércia química, elevada dureza, possibilidade de deposição em substratos metálicos de diferentes formas, alta aderência a superfícies metálicas com diferentes formas e obtenção em grandes escalas. O foco de investigação deste trabalho é estabelecer de uma relação clara dos parâmetros de descarga e geração do plasma em função da alta tensão de polarização na obtenção do filme de DLC em substratos de liga de Titânio (Ti₆Al₄V) geralmente muito usada em aplicações espaciais e industriais.

Para o alcance destes resultados, utilizou-se a técnica de deposição DC pulsada PECVD (Plasma Enhanced Chemical Vapor Deposition), com isso foi possível fazer a modificação de superfície e ao mesmo tempo efetuar a deposição do filme de DLC, efetuando manobras de trocas "in situ" de gases e alteração de parâmetros de nucleação e de crescimento dos filmes de DLC. Para tanto, foram utilizadas algumas práticas laboratoriais, inicialmente com os processos de polimento de amostras e em seguida, os procedimentos e técnicas de nucleação e crescimento dos filmes de DLC e as respectivas interfaces. As amostras foram caracterizadas pelas técnicas de espectroscopia de espalhamento Raman, Perfilometia óptica teste de riscamento.

2 – OBJETIVO

Este trabalho tem como objetivo investigar a aderência de filmes de DLC à superfície do substrato de ligas de titânio (Ti₆Al₄V), variando a tensão de polarização e largura do pulso procurando atender exigências para aplicações espaciais e algumas aplicações industriais. Para isso foram aplicadas mudanças substanciais nos parâmetros do reator, como por exemplo, mudanças de componentes gasosos, pressão interna, condições de obtenção da interface variando bias e a largura do pulso (Pulse-Width Modulation- PWM).

3 – INTRODUÇÃO

Apesar do enorme progresso realizado pela Ciência e Engenharia de Materiais nos últimos anos, ainda permanecem grandes desafios tecnológicos no desenvolvimento de materiais ainda mais sofisticados e especializados e, ao mesmo tempo, ecologicamente sustentáveis e de baixo custo. Existe uma grande demanda

3

por materiais leves, duráveis e resistentes a: ambientes corrosivos; altas temperaturas e esforços mecânicos. Estes materiais são estudados para aplicações diversas que vão desde próteses biocompatíveis até peças de satélites (Radi, 2012).

A partir desta perspectiva de desenvolvimento de materiais, os filmes finos, principalmente os provenientes do carbono, tais como, o DLC (Carbono tipodiamante), tem se mostrado promissores para diversas aplicações. Com excelentes propriedades químicas e mecânicas, com o conhecimento das técnicas de deposição é possível controlar a hidrogenação desses filmes e também adicionar elementos químicos em sua estrutura.

Dentre os vários processos de deposição de filmes finos o processo de deposição química a vapor assistida por plasma, *PECVD* (*Plasma Chemical Enhanced Vapor Deposition*) destaca-se devido algumas particularidades. Esse processo é limpo, seco, rápido, relativamente barato e de fácil execução. Com isso proporciona materiais uniformes, homogêneos, livres de defeitos e com propriedades fortemente dependentes dos parâmetros de deposição. (JONES, 2009)

Este projeto trata do estudo e desenvolvimento de um processo para a deposição de filmes de DLC em substratos de liga de titânio (Ti₆Al₄V), visando obter características melhoradas dos filmes de DLC, averiguar a adesão do filme ao substrato e analisar os efeitos de mudanças de parâmetros no processo de deposição PECVD (Plasma Enhanced Chemical Vapor Deposition).

3.1. – O DLC

A sigla DLC advém do Inglês "Diamond-like Carbon" (Carbono tipo-diamente) isto deve-se às propriedades deste serem semelhantes às do diamante, principalmente a dureza, resistência ao desgaste, transparência óptica, alta resistência elétrica e baixo coeficiente de atrito.

3.1.1 – Propriedades e aplicações do DLC

Revestimentos de DLC são caracterizados por baixo atrito, alta resistência ao desgaste e elevada dureza. Em engenharia mecânica, baixo atrito significa menor perda de energia, maior confiabilidade e uma melhor resistência ao desgaste. (RYEOL, 2011).

É notório que o diamante cristalino é o material mais duro conhecido, apresenta efeitos piezo resistivo consideráveis, mas a temperatura de fabricação elevada de mais de 700 °C e os custos impedem grandes aplicações industriais. Além de

apresentarem propriedades diferentes dos diamantes, os filmes de carbono amorfo hidrogenados podem ser preparados a temperaturas baixas e aplicados em diferentes materiais, incluindo polímeros. Inovações futuras precisarão de sensores integrados a superfície dos filmes finos, que podem ser flexíveis e assim aplicados a zonas críticas de vários componentes técnicos para o monitoramento e controle do estado real das máquinas. Esses locais de interesse são contatos tribológicos, por exemplo, rolamentos, ferramentas e parafusos (BIEHL, 2006).

4 – METODOLOGIA

4.1. – Preparação e limpeza das amostras

É de suma importância o processo de preparação e limpeza dos substratos antes de cada deposição para maximizar o efeito sobre a aderência do filme. Inicialmente as amostras de Ti₆Al₄V foram cortadas, em seguida as mesmas foram fixadas em um suporte com cera, após isso lixadas na ordem crescente de lixas d'água de 400 até 2000 granas, após o lixamento realizou-se o polimento das amostras utilizando feltro e três tipos de pastas diamantadas. Antes da realização de cada deposição foi realizada a limpeza das amostras que foram submetidas ao banho de ultrassom com álcool durante 10 minutos, após o banho as amostras foram rinçadas com acetona a fim de retirar o resto dos resíduos.

4.2. - Deposição do Filme

A técnica PECVD é caracterizada por ter uma alta potência de aceleração dos íons, menor custo com equipamentos e com o crescimento dos filmes se comparado com outros métodos. Por isso, PECVD tem um grande potencial de aplicação generalizada em diversos seguimentos industrias, desde que sua aderência possa ser melhorada (MORI; TACHIKAWA, 2002). A deposição dos filmes finos de DLC foi realizada a partir da técnica citada anteriormente.

A câmara utilizada para a deposição dos filmes tem forma cilíndrica, feita de aço inoxidável e possui um volume de 25 litros. Ela é composta por um catodo (porta substrato) de aço inoxidável, com 10 cm de diâmetro e refrigerado com água, permitindo que a deposição seja feita em temperatura próxima a ambiente. Isto possibilita a aplicação do filme em diversos substratos, tais como plástico, vidros e etc. Uma bomba difusora e uma mecânica estão acopladas a esta câmara de deposição, o

5

que permite atingir pressões de até 10⁻⁶ Torr. O fluxo dos gases injetados é regulado por fluxímetros devidamente calibrados para cada gás.

FIGURA 1: Sistema de deposição de PECVD (a), interior da câmera de deposição com o catodo refrigerado (b).

Antes de iniciar a 1ª etapa, as amostras foram colocadas no interior da câmara sobre o porta substrato. Em seguida, iniciou-se o processo, o vácuo foi atingido (0,1 mPa) e uma limpeza física foi realizada a partir de uma descarga com Argônio (Ar) para remover a camada de óxido e/ou outras sujeiras superficiais. Logo após foi restabelecido o alto vácuo.

Na 2^a etapa, para obter alta aderência nos substratos de liga de titânio (Ti6Al4V), uma interface de silício amorfo foi depositada utilizando-se o gás silano (SiH₄) como atmosfera precursora. Essa interface, com espessura de alguns décimos de nanômetros, reduz a tensão do filme aumentando assim sua adesão.

A 3^a etapa consiste na deposição de diferentes filmes de DLC a partir de diferentes hidrocarbonetos (gás e/ou líquido) como precursores de carbono e hidrogênio. Estes são metano (CH₄), acetileno (C₂H₂) e tolueno (C₇H₈). Para a inserção do precursor tolueno no reator foi utilizada uma válvula agulha, a qual permitiu melhor controle da entrada de líquido na câmara. Os parâmetros de deposição dos 3 diferentes filmes de DLC estão descritos na tabela abaixo.

	Gás	Fluxo (sccm)	Tensão (V)	Pressão (torr)	Tempo (h)
1. Limpeza	Ar	1	700	3.10 ⁻⁵	0,5
2. Interface	SiH ₄	0,5	750	3.10 ⁻⁵	0,5
3. DLC	SiH₄+ CH₄	0,02 1,5	750	3.10 ⁻⁵	0,5
4. DLC	CH4	1,7	750	9,5.10 ⁻²	2,5

Tabela 1. Etapas da deposição do primeiro filme de DLC.

 Tabela 2. Etapas da deposição do segundo filme de DLC.

	Gás	Fluxo	Tensão	Pressão	Tempo
	Gas	(sccm)	(V)	(torr)	(h)
1. Limpeza	Ar	1	700	3.10 ⁻⁵	0,5
2. Interface	SiH ₄	0,5	750	3.10 ⁻⁵	0,5
	SiH ₄ +	0,02	750	3 10 ⁻⁵	0.5
0. 220	C_2H_2	1,5	730	5.10	0,0
4. DLC	C ₂ H ₂	1,7	750	9.10 ⁻⁵	2,5

Tabela 3. Etapas da deposição do terceiro filme de DLC.

	Gás	Fluxo	Tensão (V)	Pressão (torr)	Tempo (b)
			(•)		(1)
1. Limpeza	Ar	1	700	3.10 ⁻⁵	0,5
2. Interface	SiH₄	0,5	750	3.10 ⁻⁵	0,5
	SiH ₄ +	0,2	750	3 10 ⁻⁵	
0. 220	C_2H_2	0,7	730	5.10	0,5
	$C_2H_2 +$	0,5	750	0 10 ⁻⁵	25
	C ₇ H ₈	V. agulha	750	9.10	2,0

4.3. - Caracterizações

Após a deposição do filme de DLC no substrato ocorreu o processo de caracterização, com o objetivo de analisar a qualidade e aderência do filme produzido.

4.3.1. - Perfilometria Óptica

Para garantir a homogeneidade da rugosidade na superfície dos substratos realizaram-se, após as deposições medidas de rugosidade em um perfilometro óptico, WYKO NT1100 (figura 3). Foram realizadas 5 medidas em pontos diferentes para cada amostra.

FIGURA 2: Perfilometro Óptico, WYKO NT1100.

4.3.2. - Espectroscopia Raman

A espectroscopia Raman é muito mais sensível aos sítios de configuração sp^2 devido a sua maior seção transversal (CASIRAGHI, 2005) que aos de configuração sp^3 . Dos diferentes estudos realizados, tem sido encontrada certa dependência da posição e da largura das bandas *D* e *G*, assim como da razão das suas intensidades, I_D/I_G , com as propriedades mecânicas, estruturais e ópticas dos filmes de DLC.

As medidas dos espectros Raman foram feitas utilizando um sistema Renishaw 2000, com um laser iônico de Ar+ ($\lambda = 514,5$ nm) com geometria de retroespalhamento. A potência do laser sobre a amostra foi de aproximadamente 0,6 mW e a área do laser de aproximadamente 10 μ m². O deslocamento Raman foi calibrado usando o pico do diamante em 1332 cm⁻¹. As medidas foram realizadas no ar e à temperatura ambiente.

4.3.3. - Ensaio de aderência

Para os ensaios de aderência, utilizou-se o tribômetro modelo UMT-2 produzido pela CETR (figura 4). As amostras foram fixadas no porta amostras por meio de parafusos e fita dupla-face com espessura de ordem micrométrica, com o objetivo de evitar a movimentação da amostra durante o teste. Foi utilizada uma ponta de diamante do tipo Rockwell C 120º com raio de curvatura de 200µm (figura 5). A carga foi aplicada de forma crescente e linear com o tempo, variando de 0,2N até 25N e os limites de carga foram determinados de acordo cada material. O ponto onde ocorreu a primeira trinca foi determinado como a carga crítica.

FIGURA 3: Tribômetro utilizado nos ensaios de aderência.

FIGURA 5: Representação do teste de riscamento (Costa, 2010).

5 - RESULTADOS E DISCUSSÕES

5.1. - Perfilometria Óptica

A média da rugosidade aritmética (Ra) dos substratos em estudo estão apresentados na tabela abaixo. Observa-se uma padronização nos resultados dos precursores metano e acetileno mantendo a reprodutividade das amostras em estudo. A rugosidade do substrato acompanha a rugosidade do filme. Um sistema de injeção liquida por meio de válvula agulha foi instalada na tampa do reator, isso justifica o alto valor de rugosidade obtido para o precursor tolueno (Figura 8).

Filme	Precursor	Rugosidade (nm)
1. DLC	CH ₄	12,14
2. DLC	C_2H_2	12,63
3. DLC	C ₂ H ₂ + C ₇ H ₈	189,10

Tabela 4. Rugosidade (valor médio) dos 3 filmes de DLC com diferentes precursores.

As imagens obtidas pelo perfilometro óptico (Figura 6, 7 e 8) representam o perfil de rugosidade de cada filme.

FIGURA 4: Perfil de rugosidade do filme com precursor C₂H₂.

FIGURA 5: Perfil de rugosidade do filme com precursor CH_{4.}

FIGURA 6: Perfil de rugosidade do filme com precursor C₇H₈.

A taxa de deposição e a espessura dos filmes foram determinadas a partir de medidas de perfilometria óptica. A taxa de crescimento foi calculada dividindo a espessura do filme pelo tempo de deposição. Uma região do substrato foi coberta com outra placa de silício. Com o perfilometro pôde-se então medir o degrau formado entre as regiões do substrato com e sem o filme de DLC depositado e então observar o crescimento dos filmes. Observa-se na tabela abaixo (Tabela 5) entre o primeiro e segundo filme proximidade na taxa de crescimento, porém no terceiro não houve crescimento considerável se comparado aos demais, isso pode ser explicado devido a utilização do precursor no estado liquido e a utilização da válvula agulha.

As tabelas abaixo apresentam os resultados da espessura e taxa de crescimento obtido nos crescimentos dos filmes de DLC de acordo com o precursor (gás e liquido) utilizado.

Filme	Precursor	Espessura
		(µm)
1. DLC	CH ₄	0,71
2. DLC	C_2H_2	0,99
3. DLC	C ₂ H ₂ + C ₇ H ₈	0,26

Tabela 5. Espessura (valor médio) dos 3 filmes de DLC com diferentes precursores.

 Tabela 6. Taxa de crescimento (valor médio) dos 3 filmes de DLC com diferentes precursores.

Filme	Precursor	Taxa de Crescimento	
		(µm/h)	
1. DLC	CH ₄	0,24	
2. DLC	C_2H_2	0,30	
	$C_2H_2 +$	0.00	
3. DLC	C ₇ H ₈	0,09	

As imagens abaixo foram obtidas pelo perfilometro óptico (figura 9, 10 e 11) representam os crescimentos dos filmes sobre o substrato de liga de titânio.

FIGURA 7: Perfil de crescimento do filme com precursor C₂H₂.

FIGURA 8: Perfil de crescimento do filme com precursor CH₄.

FIGURA 9: Perfil de crescimento do filme com precursor C₇H₈.

5.2. - Espectroscopia Raman

A tabela abaixo apresenta os valores da posição da banda D e G dos espectros de Raman das condições estudadas. As posições das bandas D e G caracterizam os filmes de DLC, a intensidade da banda D refere-se ao nível de sp³ do substrato, e a intensidade da banda G refere-se ao nível de sp² do substrato estudado. Pode-se observar que as posições de todas as bandas não apresentaram alterações significantes.

Filme Banda D Banda G FWHM (G) ID/IG Precursor [H] (%) (cm-1) (cm-1) (cm-1) 1. DLC CH_4 1312,22 1528,4 143,01 0,21 35,37 1296,40 2. DLC C_2H_2 1525,38 136,02 0,21 32,16 3. DLC $C_2H_2 +$ 1289,79 1523,91 145,38 0,48 49,15 C_7H_8

Tabela 7. Valores de posição da Banda D e G (valor médio) e da hidrogenação (valor médio) dos 3 filmes de DLC com diferentes precursores.

5.3. - Ensaio de aderência

A tabela abaixo apresenta os resultados de ensaio de aderência para amostras de Ti₆Al₄V. A carga crítica foi realizada através do monitoramento do ponto onde ocorreu a primeira ruptura no filme. Pode-se observar que entre os dois primeiros filmes os coeficientes de atrito foram semelhantes, em seguida verifica-se uma variação abrupta no terceiro filme, esta é justificada pela total retirada da cera que provém da etapa de preparação das amostras a qual esta fixou as amostras no suporte utilizado, após a realização dos dois primeiros experimentos, verificou-se que a cera estava prejudicando a aderência do filme, sendo assim, o método de limpeza das amostras foi intensificado e a carga critica aumentou consideravelmente, como pode-se observar no terceiro experimento o qual foi realizado este método.

	_	Carga Critica
Filme	Precursor	(N)
1. DLC	CH ₄	9,07
2. DLC	C_2H_2	8,63
	$C_2H_2 +$	15.0
3. DLC	C ₇ H ₈	15,2

Tabela 8. Carga Critica dos 3 filmes de DLC com diferentes precursores.

As imagens abaixo foram obtidas pelo perfilometro óptico (figura 9, 10 e 11) representam os crescimentos dos filmes sobre o substrato de liga de titânio.

FIGURA 10: Gráfico de teste de riscamento do filme com precursor C₂H₂.

6 - CONSIDERAÇÕES FINAIS

Durante o período da bolsa foram feitas pesquisas acerca da técnica de deposição PECVD, após os estudos foram realizadas preparações nas amostras e a seguir as deposições em um total de 3 amostras, descartando as amostras que estavam impossibilitadas de serem realizadas testes. No processo de deposição foram realizadas modificações no terceiro experimento, realizou-se dois experimentos e pode-se observar que o heptano (C_7H_{16}) delaminava as amostras e assim este foi substituído pelo tolueno (C_7H_8).

Como pode ser visto a partir dos resultados das caracterizações, os dois primeiros experimentos não apresentam uma boa aderência, mas aplicando as modificações de limpeza isso será melhorado, serão feitas modificações na válvula agulha a fim de diminuir a rugosidade do filme como foi mostrado no terceiro experimento. Porém faz-se necessário a diante o estudo mais aprofundado da influência de outros fatores como pressão, fluxo de gases, tempo de deposição entre outros fatores.

7 - REFERÊNCIAS BIBLIOGRÁFICAS

BIEHL, S.; LüTHJE, H.; BANDORF, R.; SICK, J.-H. Multifunctional thin film sensors based on amorphous diamond-like carbon for use in tribological applications. **Thin Solid Films**, v. 515, n. 3, p. 1171-1175, 2006. ISSN 0040-6090.

COSTA, R. P. de C. Estudo da lubrificação híbrida usando filmes de DLC com lubrificantes nas áreas espacial, automotiva e médica. 2010. 180f. Tese (Doutorado em Engenharia e Tecnologia Espaciais/Sensores e Materiais). - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2010.

CASIRAGHI, C.; Ferrari, A. C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. **Physical Review B**, v. 72, p. 085401-085414, 2005.

JONES A. C., Hitchman, M. L., Chemical Vapour Deposition: Precursors, Process and Applications, **Royal Society of Chemistry** cap 1, p 1-36, 2009.

MORI, H.; TACHIKAWA, H. Increased adhesion of diamond-like carbon - si coatings and its tribological properties. **Surface and Coatings Technology**, v. 149, n. 2-3, p. 224-229, 2002. ISSN 0257-8972.

Radi; P. A. **Triboquímica analítica: estudo da dependência dos parâmetros tribológicos com a modificação superficial em filmes à base de carbono.** Tese de doutorado em Engenharia e Tecnologia Espacial, Instituto de Pesquisa Espacial - INPE, São José dos Campos, 2012.

RYEOL, K. W.; SUK, P. M.; WHAN, K. Y.; CHANG, J. U.; SUB, C. W. Effect of voltage on diamond-like carbon thin film using linear ion source. **Procedia Engineering**, v. 10, n. 0, p. 2833-2838, 2011. ISSN 1877-7058.